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STABILITY OF LINEAR IMPULSIVE DIFFERENTIAL
EQUATIONS VIA t∞-SIMILARITY

Sung Kyu Choi*, Namjip Koo**, and Chunmi Ryu***

Abstract. In this paper we investigate h-stability for linear im-
pulsive equations using the notion of t∞-similarity and an impulsive
integral inequality.

1. Introduction

The impulsive differential equations describe evolution process which
at certain moments change their state rapidly. In the mathematical sim-
ulation of such processes it is convenient to assume that this change takes
place momentarily and the process changes its state by jump. Thus, the
impulsive differential equations are adequate mathematical models for
description of evolution processes characterized by the combination of a
continuous and jump change of their states. It is now being recognized
that the theory of impulsive differential equations is not only richer
than the corresponding theory of differential equations but also repre-
sents a more natural framework for mathematical modelling of many real
world phenomena. For a detail discussion of impulsive integral inequali-
ties and some basic concepts concerning about the impulsive differential
equations, we refer the reader to [1, 2, 7].

The notion of h-stability for differential equations was introduced
by Pinto and includes several types of known stability properties as
uniform stability, uniform Lipschitz stability and exponential asymptotic
stability [8, 9].
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Choi et al. studied h-stability for the nonlinear Volterra integro-
differential system [4] and nonlinear perturbed systems [3]. Moreover,
the notion of t∞-similarity and Liapunov functions were used to study
h-stability for nonlinear differential systems [5].

In this paper we study h-stability for linear impulsive equations using
the notion of t∞-similarity and an impulsive integral inequality.

2. Main results

Suppose that (τk) ⊂ R is a fixed sequence and satisfies the condition

τk < τk+1, k ∈ Z and lim
k→±∞

τk = ±∞. (2.1)

Let PC(R,Rn×n) be the set of functions ψ : R → Rn×n which are
continuous for t ∈ R, t 6= τk, are continuous from the left for t ∈ R, and
have discontinuities of the first kind at the points τk ∈ R for each k ∈ Z.

We consider two linear homogeneous impulsive equations{
x′ = A(t)x, t 6= τk,

∆x = Akx, t = τk, k ∈ Z,
(2.2)

and {
y′ = B(t)y, t 6= τk,

∆y = Bky, t = τk, k ∈ Z,
(2.3)

where

A,B ∈ PC(R,Rn×n), Ak, Bk ∈ Rn×n, det(E + Bk) 6= 0, k ∈ Z. (2.4)

Also, we consider the perturbed nonlinear homogeneous impulsive
equation of (2.2){

y′ = A(t)y + g(t, y), t 6= τk, g(t, 0) = 0,

∆y = Aky + gk(y), t = τk, gk(0) = 0, k ∈ Z,
(2.5)

where g ∈ Cτ (R × Rn,Rn) and gk ∈ C(Rn,Rn) for each k ∈ Z, respec-
tively.

Lemma 2.1. [2, Theorem 1.5] Let conditions (2.1) and (2.4) hold.
Then the following statements hold:

(1) For any (t0, x0) ∈ R×Rn, there exists a unique solution of equation
(2.2) with x(t+0 ) = x0 (or x(t0) = x0) and this solution is defined
for t > t0 (or t ≥ t0).

(2) If det(E +Ak) 6= 0 for each k ∈ Z, then this solution is defined for
all t ∈ R.
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We can obtain the following result under a suitable condition from
Theorem 1.11 in [2].

Lemma 2.2. [2] Each solution y(t) = y(t, t+0 , y0) of (2.5) with y(t+0 ) =
y0 satisfies the integro-summary equation

y(t) = X(t, t+0 )y0 +
∫ t

t0

X(t, τ)g(τ, y(τ))dτ

+
∑

t0≤τk<t

X(t, τ+
k )gk(y(τk)), t ≥ t+0 , k ∈ Z,

where X(t) is a fundamental matrix of (2.2) and X(t, t0) ≡ X(t)X−1(t0).

Lemma 2.3. [2, Lemma 1.4] Suppose that for t ≥ t0 the inequality

u(t) ≤ c +
∫ t

t0

b(s)u(s)ds +
∑

t0≤τk<t

βku(τk) (2.6)

holds, where u ∈ PC(R,R+), b ∈ PC(R,R+), c and βk are nonnegative
constants for each k ∈ Z. Then we have

u(t) ≤ c
∏

t0≤τk<t

(1 + βk) exp
( ∫ t

t0

b(s)ds
)

(2.7)

≤ c exp
(∫ t

t0

b(s)ds +
∑

t0≤τk<t

βk

)
, t ≥ t0, k ∈ Z. (2.8)

Remark 2.4. If A(t) and B(t) are similar, i.e., there exists an invert-
ible bounded matrix S(t) with bounded S−1(t) such that SAS−1 = B,
then exp(At) and exp(Bt) are also similar.

We recall the notion of h-stability for impulsive differential equations.

Definition 2.5. [6] The zero solution x = 0 of (2.5) is called h-stable
if there exist a positive bounded left continuous function h : R+ → R
and a constant c ≥ 1 such that

|x(t, t0, x0)| ≤ c|x0|h(t)h(t0)−1, t ≥ t0,

for |x0| small enough (here h(t)−1 = 1
h(t)).

We need the following lemma for h-stability of solutions of linear
impulsive differential systems.

Lemma 2.6. [9, Lemma 1] The linear impulsive equation (2.2) is h-
stable if and only if there exist a constant c ≥ 1 and a positive bounded
left continuous function h : R+ → R such that for every x0 ∈ Rn,

|X(t, t0)| ≤ ch(t)h(t0)−1, t ≥ t0 ≥ 0, (2.9)
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where X(t) is a fundamental matrix of (2.2).

We improve the result of Theorem 2.7 in [6] for nonlinear impulsive
differential equations.

Theorem 2.7. Suppose that the perturbed terms g and gk of (2.5)
satisfy the following conditions:

|g(t, y)| ≤ Ld(t)|y|,
|gk(y)| ≤ dk|y|, k ∈ Z,

where d ∈ PC(R,R+), dk ∈ R+, L is a nonnegative constant, and there
exists a positive constant M such that

cL

∫ ∞

0
d(s)ds + c

∑

0≤τk≤∞

h(τk)
h(τ+

k )
dk ≤ M. (2.10)

If the zero solution x = 0 of (2.2) is h-stable, then the zero solution
y = 0 of (2.5) is h-stable.

Proof. Let y(t) = y(t, t0, y0) be any solution of (2.5) with y(t0) = y0.
Since the zero solution x = 0 of (2.2) is h-stable, Then, from Lemma
2.6, there exist a constant c ≥ 1 and a positive bounded left continuous
function h : R+ → R such that

|X(t, t0)| ≤ ch(t)h(t0)−1, t ≥ t0,

where X(t) is a fundamental matrix for (2.2). Then it follows from
Lemmas 2.2 and 2.6 that

|y(t)| ≤ |X(t, t0)||y0|+ L

∫ t

t0

|X(t, τ)|d(τ)|y(τ)|dτ

+
∑

t0≤τk<t

|X(t, τ+
k )|dk|y(τk)|

≤ ch(t)h(t0)−1|y0|+ cL

∫ t

t0

h(t)h(τ)−1d(τ)|y(τ)|dτ

+c
∑

t0≤τk<t

h(t)h(τ+
k )−1dk|y(τk)|, t ≥ t0.

Letting u(t) = |y(t)|
h(t) , we have

u(t) ≤ cu(t0) + cL

∫ t

t0

d(s)u(s)ds + c
∑

t0≤τk<t

h(τk)
h(τ+

k )
dku(τk), t ≥ t0.

By Lemma 2.3, we obtain
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|y(t)| ≤ ch(t)h(t0)−1|y0| exp
(
cL

∫ t

t0

d(s)ds + c
∑

t0≤τk<t

h(τk)
h(τ+

k )
dk

)

≤ ch(t)h(t0)−1|y0| exp
(
cL

∫ ∞

t0

d(s)ds + c
∑

t0≤τk<∞

h(τk)
h(τ+

k )
dk

)

≤ ĉ|y(t0)|h(t)h(t0)−1, t ≥ t0,

where ĉ = c exp(M). Hence the zero solution y = 0 of (2.5) is h-stable.
This completes the proof.

Remark 2.8. We note that if h(t) in Theorem 2.7 is continuous, then
we have h(τk)

h(τ+
k )

= 1 for each k ∈ Z.

We can obtain the following result as the corollary of Theorem 2.7.

Corollary 2.9. [6, Theorem 2.7] Suppose that the perturbed terms
g and gk of (2.5) satisfy the following conditions:

g(t, y) = D(t)y,

gk(y) = Dky, k ∈ Z,

where D ∈ PC(R,Rn×n), Dk ∈ Rn×n, and det(E + Ak + Dk) 6= 0 for
each k ∈ Z. Assume that there exists a positive constant M such that

c

∫ ∞

0
|D(s)|ds + c

∑

0≤τk≤∞

h(τk)
h(τ+

k )
|Dk| ≤ M. (2.11)

If the zero solution x = 0 of (2.2) is h-stable, then the zero solution
y = 0 of (2.5) is h-stable.

Example 2.10. [6, Example 2.10]To illustrate Lemma 2.6, we con-
sider the linear impulsive differential equation{

x′(t) = a(t)x, t 6= τk,

∆x = akx, t = τk, k ∈ Z,
(2.12)

where a ∈ PC(R,R), ak ∈ R, and det(1 + ak) 6= 0 for each k ∈ Z.
Suppose that

∫∞
t0
|a(s)|ds < ∞ and

∑
t0≤τk≤∞ |ak| < ∞ for each t0 ∈ R.

Then the zero solution x = 0 of (2.12) is h-stable.

Let S be the set of all matrix functions S : R+ → Rn×n which belong
to PC(R+,Rn×n) and are bounded in R+ together with inverse S−1(t).
Let M be denoted by

M = {(A,Ak)|A ∈ PC(R+,Rn×n), Ak ∈ Rn×n, det(E + Ak) 6= 0, k ∈ N}.
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Definition 2.11. We say that (A,Ak) ∈M is t∞-similar to (B,Bk) ∈
M if there exists a matrix function S ∈ S such that

S′(t)−A(t)S(t) + S(t)B(t) ≡ F0 ∈ L1, t 6= τk, (2.13)
∆S(τk)−AkS(τk) + S(τ+

k )Bk ≡ F0k ∈ l1, t = τk, k ∈ N, (2.14)

where ∆S(τk) = S(τ+
k ) − S(τk). We can say that equations (2.2) and

(2.3) are t∞-similar if (A,Ak) ∈ M is t∞-similar to (B,Bk) ∈ M for
each k ∈ N. Note that the relation (A,Ak) ∼ (B, Bk) : S is an equiva-
lence relation on M [2].

Remark 2.12. The notion of t∞-similarity preserves various stability
concepts: stability, uniform stability, uniform asymptotic stability, strict
stability [2, Theorem 10.3]. In particular, when F0 = 0 in (2.13) and
F0k = 0 in (2.14) for each k ∈ N, then t∞-similarity implies kinematical
similarity.

Lemma 2.13. Suppose that equations (2.2) and (2.3) are t∞-similar.
Then we have

S(t) = X(t)[X−1(τ)S(τ)Y (τ) +
∫ t

τ
X−1(s)F0(s)Y (s)ds

+
∑

τ≤τk<t

X−1(τ+
k )F0kY (τk)]Y −1(t), t ≥ τ ≥ t0, k ∈ N,

where X(t) and Y (t) are fundamental matrices of (2.2) and (2.3), re-
spectively.

Proof. From a simple calculation, we obtain

(SY )′ = S′Y + SY ′

= [F0 + AS − SB + SB]Y
= A(SY ) + F0Y, t 6= τk,

and

∆(SY )k = ∆SkYk + Sk∆Yk

= [F0k + AkSk − S+
k Bk + S+

k Bk]Yk

= Ak(SY )k + F0kYk, t = τk, k ∈ N.

Hence we have

Y (t) = S−1(t)X(t)[X−1(τ)S(τ)Y (τ) +
∫ t

τ
X−1(s)F0(s)Y (s)ds

+
∑

τ≤τk<t

X−1(τ+
k )F0kY (τk)], t ≥ τ ≥ t0, k ∈ N.
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This completes the proof.

The results of various stabilities in Theorem 10.3 in [2] are generalized
for impulsive linear equations using t∞-similarity.

Theorem 2.14. Suppose that equations (2.2) and (2.3) are t∞-similar

and supk∈N
h(τk)

h(τ+
k )

is bounded. Then the solution x = 0 of (2.2) is h-stable

if and only if the solution y = 0 of (2.3) is h-stable.

Proof. Suppose that the solution x = 0 of (2.2) is h-stable. Then
there exist a constant c1 ≥ 1 and a positive bounded left continuous
functions h defined on R+ such that

|X(t, t0)| ≤ c1h(t)h(t0)−1, t ≥ t0 ≥ 0, (2.15)

where X(t) is a fundamental matrix of (2.2). By Lemma 2.13, we have

Y (t) = S−1(t)X(t)[X−1(τ)S(τ)Y (τ) +
∫ t

τ
X−1(s)F0(s)Y (s)ds

+
∑

τ≤τk<t

X−1(τ+
k )F0kY (τk)], t ≥ τ ≥ t0, k ∈ N,

where Y (t) is a fundamental matrix of (2.3). Then from (2.15) and by
virtue of the boundedness of S(t) and S−1(t) there are positive constants
c1 and c2 such that

|Y (t, τ)| ≤ |S−1(t)||X(t, τ)||S(τ)|+
∫ t

τ
|X(t, s)||F0(s)||Y (s, τ)|ds

+
∑

τ≤τk<t

|X(t, τ+
k )||F0k||Yk||Y −1(τ)|]

≤ c1c2h(t)h(τ)−1 + c1c2

∫ t

τ
h(t)h(s)−1|F0(s)||Y (s, τ)|ds

+c1c2

∑

τ≤τk<t

h(t)h(τ+
k )−1|F0k||Y (τk, τ)|, t ≥ τ ≥ t0.

Letting u(t) = |Y (t,τ)|
h(t) , we have

u(t) ≤ c1c2u(τ) +
∫ t

τ
c1c2|F0(s)|u(s)ds

+c1c2

∑

τ≤τk<t

h(τk)
h(τ+

k )
|F0k|u(τk)], t ≥ τ ≥ t0.

From Lemma 2.3, we have
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|Y (t, τ)|
h(t)

≤ c1c2u(τ) exp
(∫ t

τ
c1c2|F0(s)|ds

+c1c2

∑

τ≤τk<t

h(τk)
h(τ+

k )
|F0k|

)
, t ≥ τ ≥ t0.

Hence we obtain

|Y (t, τ)| ≤ c1c2h(t)h(τ)−1 exp
(∫ t

τ
c1c2|F0(s)|ds

+c1c2

∑

τ≤τk<t

h(τk)
h(τ+

k )
|F0k|

)

≤ ch(t)h(τ)−1, t ≥ τ ≥ t0, k ∈ N,

where c is a positive constant given by

c ≡ c1c2 exp
(∫ ∞

τ
c1c2|F0(s)|ds + c1c2

∑

τ≤τk≤∞

h(τk)
h(τ+

k )
|F0k|

)
.

Hence the solution y = 0 of (2.3) is h-stable by Lemma 2.6.
The converse also holds by the similar method. This completes the

proof.

We can obtain the following result as a corollary of Theorem 2.14.

Corollary 2.15. [6, Theorem 2.13] Suppose that (2.2) and (2.3) are
kinematically similar. Then (2.2) is h-stable if and only if (2.3) is also
h-stable.

Remark 2.16. Suppose that (2.2) and (2.3) are t∞-similar.
(1) If we set h(t) = c for a positive constant c, then (2.2) is uniformly

stable if and only if (2.3) is also uniformly stable.
(2) If we set h(t) = e−λt for a positive constant λ, then (2.2) is uni-

formly exponentially stable if and only if (2.3) is also uniformly
exponentially stable.
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